ficus_carica_l
Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen RevisionVorhergehende ÜberarbeitungNächste Überarbeitung | Vorhergehende Überarbeitung | ||
ficus_carica_l [2021/09/24 09:46] – andreas | ficus_carica_l [2021/12/20 10:57] (aktuell) – andreas | ||
---|---|---|---|
Zeile 24: | Zeile 24: | ||
"In general, aldehydes and terpenes were the major volatile group responsible aroma for peels and pulps in fig fruits. Total aldehydes were higher in pulps than peel in all cultivars. However total terpenes were higher in peel rather than in pulp. Among terpenes, β-caryophyllene were the major volatile compounds found in both peel and pulp. Phenol, 2,6-bis (1, | "In general, aldehydes and terpenes were the major volatile group responsible aroma for peels and pulps in fig fruits. Total aldehydes were higher in pulps than peel in all cultivars. However total terpenes were higher in peel rather than in pulp. Among terpenes, β-caryophyllene were the major volatile compounds found in both peel and pulp. Phenol, 2,6-bis (1, | ||
[Volatile compounds determined by HS/GC-MS technique in peel and pulp of fig (Ficus carica L.) cultivars grown in Mediterranean region of Turkey., Gozlekci, S., Kafkas, E., Ercisli, S., Notulae Botanicae Horti Agrobotanici Cluj-Napoca, | [Volatile compounds determined by HS/GC-MS technique in peel and pulp of fig (Ficus carica L.) cultivars grown in Mediterranean region of Turkey., Gozlekci, S., Kafkas, E., Ercisli, S., Notulae Botanicae Horti Agrobotanici Cluj-Napoca, | ||
+ | |||
+ | Main volatile components of pollinated or non-pollinated figs were 3-hydroxy-2-butanone (acetoin; up to ~36% non-pollinated, | ||
+ | " | ||
+ | [Trad, Mehdi, et al. "Does pollination affect aroma development in ripened fig [Ficus carica L.] fruit?" | ||
Major volatile compound found in dried figs was benzaldehyde (24.7%), followed by hexanal (23.8%), furfural (9.6%), 3-methyl butanal (5.7%), 2-methyl butanal (4.0%) and pentanal (3.8%). Ethyl acetate (2.9%) was the most abundant ester found in dried figs, along with minor (0.1-0.5%) amounts of ethyl esters of C4/C5 acids. Other components were 2-pentyl furane (2.9%), 2-ethyl furane (0.9%), butyrolactone (2.2%), ethanol (1.1%) and δ-decalactone (0.2%). Pretreatment of figs with ascorbic acid, sulfur dioxide or citric acid decreased significantly the drying time, but had great influence on aroma volatiles by lowering furfural (4.8-5.5%) and making ethyl acetate a major component (19-55%).\\ | Major volatile compound found in dried figs was benzaldehyde (24.7%), followed by hexanal (23.8%), furfural (9.6%), 3-methyl butanal (5.7%), 2-methyl butanal (4.0%) and pentanal (3.8%). Ethyl acetate (2.9%) was the most abundant ester found in dried figs, along with minor (0.1-0.5%) amounts of ethyl esters of C4/C5 acids. Other components were 2-pentyl furane (2.9%), 2-ethyl furane (0.9%), butyrolactone (2.2%), ethanol (1.1%) and δ-decalactone (0.2%). Pretreatment of figs with ascorbic acid, sulfur dioxide or citric acid decreased significantly the drying time, but had great influence on aroma volatiles by lowering furfural (4.8-5.5%) and making ethyl acetate a major component (19-55%).\\ |
ficus_carica_l.1632476788.txt.gz · Zuletzt geändert: 2021/09/24 09:46 von andreas